Convolution

Convolution of f(t) and g(t) denoted (fg)(t) is

(fg)(t)=0tf(tτ)g(τ)dτ=0tf((τt))g(τ)dτ

Properties

Commutativity

fg=gf

Distributivity

f(g+h)=(fg)+(fh)

Associativity

(fg)h=f(gh)

Zero

f0=0

Theorem

If f(t) and g(t) are piecewise continuous and of exponential order for t0, then so is (fg)(t) and

\mathscr{L}\{f * q \} = F(s) G(s)$$ where $F(s) = \mathscr{L}\{f\}$ and $G(s) = \mathscr{L}\{g\}$ ## Voltera Integral Equation <div class="transclusion internal-embed is-loaded"><a class="markdown-embed-link" href="/voltera-integral-equation/" aria-label="Open link"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="svg-icon lucide-link"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a><div class="markdown-embed"> Equation of the form $ \begin{align} f(t) &= g(t) + (f* h)(t), t \geq 0 \\ &= g(t) + \int_0^t f(t - \tau) h(\tau) d \tau \end{align} $ Where $g(t)$ and $h(t)$ are given function. Use the Laplace Transform with Convolution to solve it ## Steps - Take Laplace of both sides - Calculate specific Laplace of $f()$ and $h()$ - Reduce down to functions of $F(s) = \mathscr{L}(t)$ - Isolate for $F(s)$ - Perform Partial Fraction Decomposition - Take Inverse Laplace Transform </div></div>