Heaviside Function

u(tτ)={0ift<τ1iftτ

Screenshot 2023-04-26 at 7.15.05 PM.png

Theorem (Translation in t)

Let F(s)=L{f(t)} and assume τ>0.

Then

L{u(tτ)f(tτ)}=eτsF(s)

and so u(tτ)f(tτ)=L1{eτsF(s)}

Special Case:

f(t)=1L{u(tτ)}=eτss